Nature Biotechnology

Displaying 1 - 12 of 12
Pezet, M. G., Torres, J. A., Thimraj, T. A., Matkovic, I., Schrode, N., Murray, J. W., Saqi, A., Beaumont, K. G., & Snoeck, H.-W. (2025). Human respiratory airway progenitors derived from pluripotent cells generate alveolar epithelial cells and model pulmonary fibrosis. Nature Biotechnology. https://doi.org/10.1038/s41587-025-02569-0
Publication Date
Gu, J., Iyer, A., Wesley, B., Taglialatela, A., Leuzzi, G., Hangai, S., Decker, A., Gu, R., Klickstein, N., Shuai, Y., Jankovic, K., Parker-Burns, L., Jin, Y., Zhang, J. Y., Hong, J., Niu, X., Costa, J. A., Pezet, M. G., Chou, J., … Gaublomme, J. T. (2024). Mapping multimodal phenotypes to perturbations in cells and tissue with CRISPRmap. Nature Biotechnology. https://doi.org/10.1038/s41587-024-02386-x
Publication Date
Walsh, Z. H., Shah, P., Kothapalli, N., Shah, S. B., Nikolenyi, G., Brodtman, D. Z., Leuzzi, G., Rogava, M., Mu, M., Ho, P., Abuzaid, S., Vasan, N., AlQuraishi, M., Milner, J. D., Ciccia, A., Melms, J. C., & Izar, B. (2024). Mapping variant effects on anti-tumor hallmarks of primary human T cells with base-editing screens. Nature Biotechnology. https://doi.org/10.1038/s41587-024-02235-x
Publication Date
He, S., Jin, Y., Nazaret, A., Shi, L., Chen, X., Rampersaud, S., Dhillon, B. S., Valdez, I., Friend, L. E., Fan, J. L., Park, C. Y., Mintz, R. L., Lao, Y.-H., Carrera, D., Fang, K. W., Mehdi, K., Rohde, M., McFaline-Figueroa, J. L., Blei, D., … Azizi, E. (2024). Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor–immune hubs. Nature Biotechnology. https://doi.org/10.1038/s41587-024-02173-8
Publication Date
Lampe, G. D., King, R. T., Halpin-Healy, T. S., Klompe, S. E., Hogan, M. I., Vo, P. L. H., Tang, S., Chavez, A., & Sternberg, S. H. (2023). Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 42(1), 87–98. https://doi.org/10.1038/s41587-023-01748-1
Publication Date
Austin, G. I., Park, H., Meydan, Y., Seeram, D., Sezin, T., Lou, Y. C., Firek, B. A., Morowitz, M. J., Banfield, J. F., Christiano, A. M., Pe’er, I., Uhlemann, A.-C., Shenhav, L., & Korem, T. (2023). Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data. Nature Biotechnology, 41(12), 1820–1828. https://doi.org/10.1038/s41587-023-01696-w
Publication Date
Huang, Y., Sheth, R. U., Zhao, S., Cohen, L. A., Dabaghi, K., Moody, T., Sun, Y., Ricaurte, D., Richardson, M., Velez-Cortes, F., Blazejewski, T., Kaufman, A., Ronda, C., & Wang, H. H. (2023). High-throughput microbial culturomics using automation and machine learning. Nature Biotechnology, 41(10), 1424–1433. https://doi.org/10.1038/s41587-023-01674-2
Publication Date
Kuwasaki, Y., Suzuki, K., Yu, G., Yamamoto, S., Otabe, T., Kakihara, Y., Nishiwaki, M., Miyake, K., Fushimi, K., Bekdash, R., Shimizu, Y., Narikawa, R., Nakajima, T., Yazawa, M., & Sato, M. (2022). A red light–responsive photoswitch for deep tissue optogenetics. Nature Biotechnology, 40(11), 1672–1679. https://doi.org/10.1038/s41587-022-01351-w
Publication Date
Chowdhury, R., Bouatta, N., Biswas, S., Floristean, C., Kharkar, A., Roy, K., Rochereau, C., Ahdritz, G., Zhang, J., Church, G. M., Sorger, P. K., & AlQuraishi, M. (2022). Single-sequence protein structure prediction using a language model and deep learning. Nature Biotechnology, 40(11), 1617–1623. https://doi.org/10.1038/s41587-022-01432-w
Publication Date
Rube, H. T., Rastogi, C., Feng, S., Kribelbauer, J. F., Li, A., Becerra, B., Melo, L. A. N., Do, B. V., Li, X., Adam, H. H., Shah, N. H., Mann, R. S., & Bussemaker, H. J. (2022). Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning. Nature Biotechnology, 40(10), 1520–1527. https://doi.org/10.1038/s41587-022-01307-0
Publication Date
Harimoto, T., Hahn, J., Chen, Y.-Y., Im, J., Zhang, J., Hou, N., Li, F., Coker, C., Gray, K., Harr, N., Chowdhury, S., Pu, K., Nimura, C., Arpaia, N., Leong, K. W., & Danino, T. (2022). A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nature Biotechnology, 40(8), 1259–1269. https://doi.org/10.1038/s41587-022-01244-y
Publication Date