Induction and Differentiation of Pluripotent Stem Cells

Displaying 1 - 19 of 19CSV
Yuan, F., Yang, J., Ma, F., Hu, Z., Malik, V., Zang, R., Li, D., Shi, X., Huang, X., Zhou, H., & Wang, J. (2025). Pluripotency factor Tex10 finetunes Wnt signaling for spermatogenesis and primordial germ cell development. Nature Communications, 16(1). https://doi.org/10.1038/s41467-025-57165-2
Publication Date
Kim, S.-M., Kim, Y.-H., Han, G. U., Kim, S. G., Kim, B.-J., Moon, S.-H., Shin, S. H., & Ryu, B.-Y. (2024). Elucidating the mechanisms and mitigation strategies for six-phthalate-induced toxicity in male germ cells. Frontiers in Cell and Developmental Biology, 12. https://doi.org/10.3389/fcell.2024.1398176
Publication Date
Teles, D., & Fine, B. M. (2024). Using induced pluripotent stem cells for drug discovery in arrhythmias. Expert Opinion on Drug Discovery, 19(7), 827–840. https://doi.org/10.1080/17460441.2024.2360420
Publication Date
Tanaka, J., Miura, A., Shimamura, Y., Hwang, Y., Shimizu, D., Kondo, Y., Sawada, A., Sarmah, H., Ninish, Z., Mishima, K., & Mori, M. (2024). Generation of salivary glands derived from pluripotent stem cells via conditional blastocyst complementation. Cell Reports, 43(6), 114340. https://doi.org/10.1016/j.celrep.2024.114340
Publication Date
Georgieva, D., Wang, N., Taglialatela, A., Jerabek, S., Reczek, C. R., Lim, P. X., Sung, J., Du, Q., Horiguchi, M., Jasin, M., Ciccia, A., Baer, R., & Egli, D. (2024). BRCA1 and 53BP1 regulate reprogramming efficiency by mediating DNA repair pathway choice at replication-associated double-strand breaks. Cell Reports, 43(4), 114006. https://doi.org/10.1016/j.celrep.2024.114006
Publication Date
MacCarthy, C. M., Wu, G., Malik, V., Menuchin-Lasowski, Y., Velychko, T., Keshet, G., Fan, R., Bedzhov, I., Church, G. M., Jauch, R., Cojocaru, V., Schöler, H. R., & Velychko, S. (2024). Highly cooperative chimeric super-SOX induces naive pluripotency across species. Cell Stem Cell, 31(1), 127-147.e9. https://doi.org/10.1016/j.stem.2023.11.010
Publication Date
Eigenhuis, K. N., Somsen, H. B., van der Kroeg, M., Smeenk, H., Korporaal, A. L., Kushner, S. A., de Vrij, F. M. S., & van den Berg, D. L. C. (2023). A simplified protocol for the generation of cortical brain organoids. Frontiers in Cellular Neuroscience, 17. https://doi.org/10.3389/fncel.2023.1114420
Publication Date
Iannello, G., Patel, A., Sirabella, D., Diaz, A. G., Hoover, B. N., Sarmah, H., & Corneo, B. (2023). Simple, Fast, and Efficient Method for Derivation of Dermal Fibroblasts From Skin Biopsies. Current Protocols, 3(3). Portico. https://doi.org/10.1002/cpz1.714
Publication Date
Portela-Lomba, M., Simón, D., Fernández de Sevilla, D., Moreno-Flores, M. T., & Sierra, J. (2023). Small molecules fail to induce direct reprogramming of adult rat olfactory ensheathing glia to mature neurons. Frontiers in Molecular Neuroscience, 16. https://doi.org/10.3389/fnmol.2023.1110356
Publication Date
Limone, F., Guerra San Juan, I., Mitchell, J. M., Smith, J. L. M., Raghunathan, K., Meyer, D., Ghosh, S. D., Couto, A., Klim, J. R., Joseph, B. J., Gold, J., Mello, C. J., Nemesh, J., Smith, B. M., Verhage, M., McCarroll, S. A., Pietiläinen, O., Nehme, R., & Eggan, K. (2023). Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Reports, 42(1), 111896. https://doi.org/10.1016/j.celrep.2022.111896
Publication Date
Du, W., Wang, J., Kuo, T., Wang, L., McKimpson, W. M., Son, J., Watanabe, H., Kitamoto, T., Lee, Y., Creusot, R. J., Ratner, L. E., McCune, K., Chen, Y.-W., Grubbs, B. H., Thornton, M. E., Fan, J., Sultana, N., Diaz, B. S., Balasubramanian, I., … Accili, D. (2022). Pharmacological conversion of gut epithelial cells into insulin-producing cells lowers glycemia in diabetic animals. Journal of Clinical Investigation, 132(24). https://doi.org/10.1172/jci162720
Publication Date
Patel, T., Hammelman, J., Aziz, S., Jang, S., Closser, M., Michaels, T. L., Blum, J. A., Gifford, D. K., & Wichterle, H. (2022). Transcriptional dynamics of murine motor neuron maturation in vivo and in vitro. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33022-4
Publication Date
Fabrizio, V. A., Miller, K., Baggott, C., Prabhu, S., Pacenta, H., Phillips, C. L., Rossoff, J., Stefanski, H. E., Talano, J., Moskop, A., Baumeister, S. H. C., Myers, G. D., Karras, N., Brown, P. A., Qayed, M., Hermiston, M. L., Satwani, P., Krupski, C., Wilcox, R., … Schultz, L. M. (2022). Peripheral Blast Count at Apheresis Acts Independent of Disease Burden As a Risk Factor for Survival Following Tisagenlecleucel in Children and Young Adults. Blood, 140(Supplement 1), 4661–4663. https://doi.org/10.1182/blood-2022-169603
Publication Date
Malik, V., Zang, R., Fuentes-Iglesias, A., Huang, X., Li, D., Fidalgo, M., Zhou, H., & Wang, J. (2022). Comparative functional genomics identifies unique molecular features of EPSCs. Life Science Alliance, 5(11), e202201608. https://doi.org/10.26508/lsa.202201608
Publication Date
Wang, S.-H., Hao, J., Zhang, C., Duan, F.-F., Chiu, Y.-T., Shi, M., Huang, X., Yang, J., Cao, H., & Wang, Y. (2022). KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Science China Life Sciences, 65(10), 1985–1997. https://doi.org/10.1007/s11427-021-2076-x
Publication Date
Rousová, D., Nivsarkar, V., Altmannova, V., Raina, V. B., Funk, S. K., Liedtke, D., Janning, P., Müller, F., Reichle, H., Vader, G., & Weir, J. R. (2021). Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation. ELife, 10. CLOCKSS. https://doi.org/10.7554/elife.72330
Publication Date