The p53 Signaling Network in Cancer Research

Displaying 1 - 17 of 17CSV
Kondo, Y., Ohashi, S., Katada, C., Nakai, Y., Yamamoto, Y., Tamaoki, M., Kikuchi, O., Yamada, A., Hirohashi, K., Mitani, Y., Kataoka, S., Saito, T., Vu, T. H. N., Kondo, T., Uneno, Y., Sunami, T., Yokoyama, A., Matsubara, J., Matsuda, T., … Muto, M. (2025). Aldh2 and the tumor suppressor Trp53 play important roles in alcohol-induced squamous field cancerization. Journal of Gastroenterology. https://doi.org/10.1007/s00535-024-02210-y
Publication Date
de Queiroz, R. M., Efe, G., Guzman, A., Hashimoto, N., Kawashima, Y., Tanaka, T., Rustgi, A. K., & Prives, C. (2024). Mdm2 requires Sprouty4 to regulate focal adhesion formation and metastasis independent of p53. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51488-2
Publication Date
Galanti, L., Peritore, M., Gnügge, R., Cannavo, E., Heipke, J., Palumbieri, M. D., Steigenberger, B., Symington, L. S., Cejka, P., & Pfander, B. (2024). Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-46951-z
Publication Date
Goodwin, P. J., Chen, B. E., Gelmon, K. A., Whelan, T. J., Ennis, M., Lemieux, J., Ligibel, J. A., Hershman, D. L., Mayer, I. A., Hobday, T. J., Bliss, J. M., Rastogi, P., Rabaglio-Poretti, M., Thompson, A. M., Rea, D. W., Stos, P. M., Shepherd, L. E., Stambolic, V., & Parulekar, W. R. (2023). Effect of Metformin Versus Placebo on New Primary Cancers in Canadian Cancer Trials Group MA.32: A Secondary Analysis of a Phase III Randomized Double-Blind Trial in Early Breast Cancer. Journal of Clinical Oncology, 41(35), 5356–5362. https://doi.org/10.1200/jco.23.00296
Publication Date
Kim, S., Armand, J., Safonov, A., Zhang, M., Soni, R. K., Schwartz, G., McGuinness, J. E., Hibshoosh, H., Razavi, P., Kim, M., Chandarlapaty, S., & Yang, H. W. (2023). Sequential activation of E2F via Rb degradation and c-Myc drives resistance to CDK4/6 inhibitors in breast cancer. Cell Reports, 42(11), 113198. https://doi.org/10.1016/j.celrep.2023.113198
Publication Date
Trauernicht, M., Rastogi, C., Manzo, S. G., Bussemaker, H. J., & van Steensel, B. (2023). Optimisation of TP53 reporters by systematic dissection of synthetic TP53 response elements. Nucleic Acids Research, 51(18), 9690–9702. https://doi.org/10.1093/nar/gkad718
Publication Date
Li, F., Chen, D., Sun, Q., Wu, J., Gan, Y., Leong, K. W., & Liang, X. (2023). MDM2‐Targeting Reassembly Peptide (TRAP) Nanoparticles for p53‐Based Cancer Therapy. Advanced Materials, 35(45). Portico. https://doi.org/10.1002/adma.202305164
Publication Date
Ong, H. W., Liang, Y., Richardson, W., Lowry, E. R., Wells, C. I., Chen, X., Silvestre, M., Dempster, K., Silvaroli, J. A., Smith, J. L., Wichterle, H., Pabla, N. S., Ultanir, S. K., Bullock, A. N., Drewry, D. H., & Axtman, A. D. (2023). Discovery of a Potent and Selective CDKL5/GSK3 Chemical Probe That Is Neuroprotective. ACS Chemical Neuroscience, 14(9), 1672–1685. https://doi.org/10.1021/acschemneuro.3c00135
Publication Date
Fine, R. L., Mao, Y., Garcia-Carracedo, D., Su, G. H., Qiu, W., Hochfeld, U., Nichols, G., Li, Y.-L., Dinnen, R. D., Raffo, A., & Brandt-Rauf, P. W. (2023). Gene Therapy with p14/tBID Induces Selective and Synergistic Apoptosis in Mutant Ras and Mutant p53 Cancer Cells In Vitro and In Vivo. Biomedicines, 11(2), 258. https://doi.org/10.3390/biomedicines11020258
Publication Date
Fine, R. L., Mao, Y., Dinnen, R., Rosal, R. V., Raffo, A., Hochfeld, U., Senatus, P., Bruce, J. N., Nichols, G., Wang, H., Li, Y., & Brandt-Rauf, P. W. (2023). C-Terminal p53 Palindromic Tetrapeptide Restores Full Apoptotic Function to Mutant p53 Cancer Cells In Vitro and In Vivo. Biomedicines, 11(1), 137. https://doi.org/10.3390/biomedicines11010137
Publication Date
Caspa Gokulan, R., Paulrasu, K., Azfar, J., El-Rifai, W., Que, J., Boutaud, O. G., Ban, Y., Gao, Z., Buitrago, M. G., Dikalov, S. I., & Zaika, A. I. (2023). Protein adduction causes non-mutational inhibition of p53 tumor suppressor. Cell Reports, 42(1), 112024. https://doi.org/10.1016/j.celrep.2023.112024
Publication Date
Filippone, M. G., Gaglio, D., Bonfanti, R., Tucci, F. A., Ceccacci, E., Pennisi, R., Bonanomi, M., Jodice, G., Tillhon, M., Montani, F., Bertalot, G., Freddi, S., Vecchi, M., Taglialatela, A., Romanenghi, M., Romeo, F., Bianco, N., Munzone, E., Sanguedolce, F., … Pece, S. (2022). CDK12 promotes tumorigenesis but induces vulnerability to therapies inhibiting folate one-carbon metabolism in breast cancer. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-30375-8
Publication Date
Kim, S., Leong, A., Kim, M., & Yang, H. W. (2022). CDK4/6 initiates Rb inactivation and CDK2 activity coordinates cell-cycle commitment and G1/S transition. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-20769-5
Publication Date
Diamond, J. R., Boni, V., Lim, E., Nowakowski, G., Cordoba, R., Morillo, D., Valencia, R., Genvresse, I., Merz, C., Boix, O., Frigault, M. M., Greer, J. M., Hamdy, A. M., Huang, X., Izumi, R., Wong, H., & Moreno, V. (2022). First-in-Human Dose-Escalation Study of Cyclin-Dependent Kinase 9 Inhibitor VIP152 in Patients with Advanced Malignancies Shows Early Signs of Clinical Efficacy. Clinical Cancer Research, 28(7), 1285–1293. https://doi.org/10.1158/1078-0432.ccr-21-3617
Publication Date