Neural Networks, Computer

Displaying 1 - 8 of 8CSV
Gunes, I., Bernstein, E. J., Cowper, S. E., Panse, G., Pradhan, N., Camacho, L. D., Page, N., Bundschuh, E., Williams, A., Carns, M., Aren, K., Fantus, S., Volkmann, E. R., Bukiri, H., Correia, C., Kolachalama, V. B., Wilson, F. P., Mawe, S., Mahoney, J. M., & Hinchcliff, M. (2025). Neural network analysis as a novel skin outcome in a trial of belumosudil in patients with systemic sclerosis. Arthritis Research & Therapy, 27(1). https://doi.org/10.1186/s13075-025-03508-9
Publication Date
Link, K. E., Schnurman, Z., Liu, C., Kwon, Y. J., Jiang, L. Y., Nasir-Moin, M., Neifert, S., Alzate, J. D., Bernstein, K., Qu, T., Chen, V., Yang, E., Golfinos, J. G., Orringer, D., Kondziolka, D., & Oermann, E. K. (2024). Longitudinal deep neural networks for assessing metastatic brain cancer on a large open benchmark. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-52414-2
Publication Date
Choo, T.-H., Wall, M., Brodsky, B. S., Herzog, S., Mann, J. J., Stanley, B., & Galfalvy, H. (2024). Temporal prediction of suicidal ideation in an ecological momentary assessment study with recurrent neural networks. Journal of Affective Disorders, 360, 268–275. https://doi.org/10.1016/j.jad.2024.05.093
Publication Date
Kay, K., Biderman, N., Khajeh, R., Beiran, M., Cueva, C. J., Shohamy, D., Jensen, G., Wei, X.-X., Ferrera, V. P., & Abbott, L. (2024). Emergent neural dynamics and geometry for generalization in a transitive inference task. PLOS Computational Biology, 20(4), e1011954. https://doi.org/10.1371/journal.pcbi.1011954
Publication Date
Sasse, A., Ng, B., Spiro, A. E., Tasaki, S., Bennett, D. A., Gaiteri, C., De Jager, P. L., Chikina, M., & Mostafavi, S. (2023). Benchmarking of deep neural networks for predicting personal gene expression from DNA sequence highlights shortcomings. Nature Genetics, 55(12), 2060–2064. https://doi.org/10.1038/s41588-023-01524-6
Publication Date
Thakoor, K. A., Yao, J., Bordbar, D., Moussa, O., Lin, W., Sajda, P., & Chen, R. W. S. (2022). A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06273-w
Publication Date
Gao, F., Zhang, W., Baccarelli, A. A., & Shen, Y. (2022). Predicting chemical ecotoxicity by learning latent space chemical representations. Environment International, 163, 107224. https://doi.org/10.1016/j.envint.2022.107224
Publication Date