Machine Learning
Waziry, R., Williams, O. A., Tiemeier, H., & Miles, C. (2025). Vascular-related biological stress, DNA methylation, allostatic load and domain-specific cognition: an integrated machine learning and causal inference approach. BMC Neurology, 25(1). https://doi.org/10.1186/s12883-025-04185-6
Publication Date
Columbia Affiliation
Zhu, W., Chen, L., Aphinyanaphongs, Y., Kastrinos, F., Simeone, D. M., Pochapin, M., Stender, C., Razavian, N., & Gonda, T. A. (2025). Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-89607-8
Publication Date
Columbia Affiliation
Jiang, W., Jaehnig, E. J., Liao, Y., Shi, Z., Yaron-Barir, T. M., Johnson, J. L., Cantley, L. C., & Zhang, B. (2025). Deciphering the dark cancer phosphoproteome using machine-learned co-regulation of phosphosites. Nature Communications, 16(1). https://doi.org/10.1038/s41467-025-57993-2
Publication Date
Columbia Affiliation
Wu, Z., Xu, P., Zhai, Y., Mahe, J., Guo, K., Olawole, W., Zhu, J., Han, J., Bai, G., & Zhang, L. (2025). The Association of Elevated Depression Levels and Life’s Essential 8 on Cardiovascular Health With Predicted Machine Learning Models and Interpretations: Evidence From NHANES 2007–2018. Depression and Anxiety, 2025(1). Portico. https://doi.org/10.1155/da/8865176
Publication Date
Columbia Affiliation
Dreyfuss, M., Getz, B., Lebwohl, B., Ramni, O., Underberger, D., Ber, T. I., Steinberg-Koch, S., Jenudi, Y., Gazit, S., Patalon, T., Chodick, G., Shoenfeld, Y., & Ben-Tov, A. (2024). A machine learning tool for early identification of celiac disease autoimmunity. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-80817-0
Publication Date
Columbia Affiliation
Orouji, S., Liu, M. C., Korem, T., & Peters, M. A. K. (2024). Domain adaptation in small-scale and heterogeneous biological datasets. Science Advances, 10(51). https://doi.org/10.1126/sciadv.adp6040
Publication Date
Columbia Affiliation
View
Zolnoori, M., Zolnour, A., Vergez, S., Sridharan, S., Spens, I., Topaz, M., Noble, J. M., Bakken, S., Hirschberg, J., Bowles, K., Onorato, N., & McDonald, M. V. (2024). Beyond electronic health record data: leveraging natural language processing and machine learning to uncover cognitive insights from patient-nurse verbal communications. Journal of the American Medical Informatics Association. https://doi.org/10.1093/jamia/ocae300
Publication Date
Columbia Affiliation
Ishiguchi, H., Chen, Y., Huang, B., Gue, Y., Correa, E., Homma, S., Thompson, J. L. P., Qian, M., Lip, G. Y. H., & Abdul‐Rahim, A. H. (2024). Machine learning for stroke in heart failure with reduced ejection fraction but without atrial fibrillation: A post‐hoc analysis of the WARCEF trial. European Journal of Clinical Investigation. Portico. https://doi.org/10.1111/eci.14360
Publication Date
Columbia Affiliation
Xiao, H., Tian, J., Chen, Y., Wang, C., Zhang, Y., & Chen, L. (2024). Uncovering the features of industrial odors-derived environmental complaints and proactive countermeasures by using machine-learning. Journal of Environmental Management, 370, 122900. https://doi.org/10.1016/j.jenvman.2024.122900
Publication Date
Columbia Affiliation
Nemzow, L., Phillippi, M. A., Kanagaraj, K., Shuryak, I., Taveras, M., Wu, X., & Turner, H. C. (2024). Validation of a blood biomarker panel for machine learning-based radiation biodosimetry in juvenile and adult C57BL/6 mice. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-74953-w
Publication Date
Columbia Affiliation
Sharma, R., Hogarth, D. K., Colbaugh, R., Glass, K., Mezine, A., Liakoni, V., Rudolf, C., Himmelhan, I., Hinson, J., & Sanchirico, M. (2024). Machine-Learning Model Identifies Patients With Alpha-1 Antitrypsin Deficiency Using Claims Records. COPD, 21(1), 2393348. https://doi.org/10.1080/15412555.2024.2393348
Publication Date
Columbia Affiliation
Lang, F. M., Lee, B. C., Lotan, D., Sabuncu, M. R., & Topkara, V. K. (2024). Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery. Methodist DeBakey Cardiovascular Journal, 20(4), 76–87. https://doi.org/10.14797/mdcvj.1392
Publication Date
Columbia Affiliation
View
Landau, A. Y., Blanchard, A., Kulkarni, P., Althobaiti, S., Idnay, B., Patton, D. U., Cato, K., & Topaz, M. (2024). Harnessing the Power of Machine Learning and Electronic Health Records to Support Child Abuse and Neglect Identification in Emergency Department Settings. Digital Health and Informatics Innovations for Sustainable Health Care Systems. https://doi.org/10.3233/shti240740
Publication Date
Columbia Affiliation
Wang, Z., Fang, Y., Liu, Z., Hao, N., Zhang, H. H., Sun, X., Que, J., & Ding, H. (2024). Adapting nanopore sequencing basecalling models for modification detection via incremental learning and anomaly detection. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51639-5
Publication Date
Columbia Affiliation
Parrish, R. L., Buchman, A. S., Tasaki, S., Wang, Y., Avey, D., Xu, J., De Jager, P. L., Bennett, D. A., Epstein, M. P., & Yang, J. (2024). SR-TWAS: leveraging multiple reference panels to improve transcriptome-wide association study power by ensemble machine learning. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-50983-w
Publication Date
Columbia Affiliation
Wang, E., Shuryak, I., & Brenner, D. J. (2024). A competing risks machine learning study of neutron dose, fractionation, age, and sex effects on mortality in 21,000 mice. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-68717-9
Publication Date
Columbia Affiliation
Taylor, B., Hobensack, M., Niño de Rivera, S., Zhao, Y., Masterson Creber, R., & Cato, K. (2024). Identifying Depression Through Machine Learning Analysis of Omics Data: Scoping Review. JMIR Nursing, 7, e54810. https://doi.org/10.2196/54810
Publication Date
Columbia Affiliation
View
Li, Y., Li, J., Li, W., Liang, S., Wei, W., Chu, J., Lai, J., Lin, Y., Chen, H., Su, J., Hu, X., Wang, G., Meng, J., Jiang, J., Ye, L., & An, S. (2024). Scm6A: A Fast and Low-cost Method for Quantifying m6A Modifications at the Single-cell Level. Genomics, Proteomics & Bioinformatics. https://doi.org/10.1093/gpbjnl/qzae039
Publication Date
Columbia Affiliation
Prince, E. W., Apps, J. R., Jeang, J., Chee, K., Medlin, S., Jackson, E. M., Dudley, R., Limbrick, D., Naftel, R., Johnston, J., Feldstein, N., Prolo, L. M., Ginn, K., Niazi, T., Smith, A., Kilburn, L., Chern, J., Leonard, J., Lam, S., … Hankinson, T. C. (2024). Unraveling the complexity of the senescence-associated secretory phenotype in adamantinomatous craniopharyngioma using multimodal machine learning analysis. Neuro-Oncology, 26(6), 1109–1123. https://doi.org/10.1093/neuonc/noae015
Publication Date
Columbia Affiliation
Hrytsenko, Y., Shea, B., Elgart, M., Kurniansyah, N., Lyons, G., Morrison, A. C., Carson, A. P., Haring, B., Mitchell, B. D., Psaty, B. M., Jaeger, B. C., Gu, C. C., Kooperberg, C., Levy, D., Lloyd-Jones, D., Choi, E., Brody, J. A., Smith, J. A., Rotter, J. I., … Sofer, T. (2024). Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-62945-9
Publication Date
Columbia Affiliation
Liu, Y., Joly, R., Reading Turchioe, M., Benda, N., Hermann, A., Beecy, A., Pathak, J., & Zhang, Y. (2024). Preparing for the bedside—optimizing a postpartum depression risk prediction model for clinical implementation in a health system. Journal of the American Medical Informatics Association, 31(6), 1258–1267. https://doi.org/10.1093/jamia/ocae056
Publication Date
Columbia Affiliation
Emergency Department Risk Model: Timely Identification of Patients for Outpatient Care Coordination. (2024). The American Journal of Managed Care, 30(5), e147–e156. Portico. https://doi.org/10.37765/ajmc.2024.89542
Publication Date
Columbia Affiliation
Huang, Y., Rauh-Hain, J. A., McCoy, T. H., Hou, J. Y., Hillyer, G., Ferris, J. S., Hershman, D., Wright, J. D., & Melamed, A. (2024). Comparing survival of older ovarian cancer patients treated with neoadjuvant chemotherapy versus primary cytoreductive surgery: Reducing bias through machine learning. Gynecologic Oncology, 186, 9–16. https://doi.org/10.1016/j.ygyno.2024.03.016
Publication Date
Columbia Affiliation
Mohanty, S., Hassan, F. M., Lenke, L. G., Lewerenz, E., Passias, P. G., Klineberg, E. O., Lafage, V., Smith, J. S., Hamilton, D. K., Gum, J. L., Lafage, R., Mullin, J., Diebo, B., Buell, T. J., Kim, H. J., Kebaish, K., Eastlack, R., Daniels, A. H., Mundis, G., … Bess, S. (2024). Machine learning clustering of adult spinal deformity patients identifies four prognostic phenotypes: a multicenter prospective cohort analysis with single surgeon external validation. The Spine Journal, 24(6), 1095–1108. https://doi.org/10.1016/j.spinee.2024.02.010
Publication Date
Columbia Affiliation
Kim, B.-G., Kim, G., Abe, Y., Alonso, P., Ameis, S., Anticevic, A., Arnold, P. D., Balachander, S., Banaj, N., Bargalló, N., Batistuzzo, M. C., Benedetti, F., Bertolín, S., Beucke, J. C., Bollettini, I., Brem, S., Brennan, B. P., Buitelaar, J. K., … Calvo, R. (2024). White matter diffusion estimates in obsessive-compulsive disorder across 1653 individuals: machine learning findings from the ENIGMA OCD Working Group. Molecular Psychiatry, 29(4), 1063–1074. https://doi.org/10.1038/s41380-023-02392-6
Publication Date
Columbia Affiliation
Gue, Y., Correa, E., Thompson, J. L. P., Homma, S., Qian, M., & Lip, G. Y. H. (2023). Machine Learning Predicting Atrial Fibrillation as an Adverse Event in the Warfarin and Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) Trial. The American Journal of Medicine, 136(11), 1099-1108.e2. https://doi.org/10.1016/j.amjmed.2023.07.019
Publication Date
Columbia Affiliation
Wu, Q., Schuemie, M. J., Suchard, M. A., Ryan, P., Hripcsak, G. M., Rohde, C. A., & Chen, Y. (2023). Padé approximant meets federated learning: A nearly lossless, one-shot algorithm for evidence synthesis in distributed research networks with rare outcomes. Journal of Biomedical Informatics, 145, 104476. https://doi.org/10.1016/j.jbi.2023.104476
Publication Date
Columbia Affiliation
Scheinost, D., Pollatou, A., Dufford, A. J., Jiang, R., Farruggia, M. C., Rosenblatt, M., Peterson, H., Rodriguez, R. X., Dadashkarimi, J., Liang, Q., Dai, W., Foster, M. L., Camp, C. C., Tejavibulya, L., Adkinson, B. D., Sun, H., Ye, J., Cheng, Q., Spann, M. N., … Westwater, M. L. (2023). Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer. Biological Psychiatry, 93(10), 893–904. https://doi.org/10.1016/j.biopsych.2022.10.014
Publication Date
Columbia Affiliation
View
Kebschull, M., Kroeger, A. T., & Papapanou, P. N. (2022). Differential Expression, Functional and Machine Learning Analysis of High-Throughput –Omics Data Using Open-Source Tools. Oral Biology, 317–351. https://doi.org/10.1007/978-1-0716-2780-8_19
Publication Date
Columbia Affiliation
View
Shuryak, I., Royba, E., Repin, M., Turner, H. C., Garty, G., Deoli, N., & Brenner, D. J. (2022). A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25453-2
Publication Date
Columbia Affiliation
Domínguez Conde, C., Xu, C., Jarvis, L. B., Rainbow, D. B., Wells, S. B., Gomes, T., Howlett, S. K., Suchanek, O., Polanski, K., King, H. W., Mamanova, L., Huang, N., Szabo, P. A., Richardson, L., Bolt, L., Fasouli, E. S., Mahbubani, K. T., Prete, M., Tuck, L., … Teichmann, S. A. (2022). Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 376(6594). https://doi.org/10.1126/science.abl5197
Publication Date
Columbia Affiliation
Gao, F., Zhang, W., Baccarelli, A. A., & Shen, Y. (2022). Predicting chemical ecotoxicity by learning latent space chemical representations. Environment International, 163, 107224. https://doi.org/10.1016/j.envint.2022.107224
Publication Date
Columbia Affiliation
Gao, F., Shen, Y., Brett Sallach, J., Li, H., Zhang, W., Li, Y., & Liu, C. (2022). Predicting crop root concentration factors of organic contaminants with machine learning models. Journal of Hazardous Materials, 424, 127437. https://doi.org/10.1016/j.jhazmat.2021.127437
Publication Date
Columbia Affiliation
Topkara, V. K., Elias, P., Jain, R., Sayer, G., Burkhoff, D., & Uriel, N. (2022). Machine Learning-Based Prediction of Myocardial Recovery in Patients With Left Ventricular Assist Device Support. Circulation: Heart Failure, 15(1). https://doi.org/10.1161/circheartfailure.121.008711
Publication Date
Columbia Affiliation
Saha, S., Soliman, A., & Rajasekaran, S. (2021). A robust and stable gene selection algorithm based on graph theory and machine learning. Human Genomics, 15(1). https://doi.org/10.1186/s40246-021-00366-9
Publication Date