Ferroptosis

Displaying 1 - 27 of 27CSV
Sassano, M. L., Tyurina, Y. Y., Diometzidou, A., Vervoort, E., Tyurin, V. A., More, S., La Rovere, R., Giordano, F., Bultynck, G., Pavie, B., Swinnen, J. V., Bayir, H., Kagan, V. E., Scorrano, L., & Agostinis, P. (2025). Endoplasmic reticulum–mitochondria contacts are prime hotspots of phospholipid peroxidation driving ferroptosis. Nature Cell Biology, 27(6), 902–917. https://doi.org/10.1038/s41556-025-01668-z
Publication Date
Vats, K., Tian, H., Singh, K., Tyurina, Y. Y., Sparvero, L. J., Tyurin, V. A., Kruglov, O., Chang, A., Wang, J., Green, F., Samovich, S. N., Zhang, J., Chattopadhyay, A., Murray, N., Shah, V. K., Mathers, A. R., Chandran, U. R., Pilewski, J. M., Kellum, J. A., … Bunimovich, Y. L. (2024). Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. Journal of Clinical Investigation. https://doi.org/10.1172/jci183219
Publication Date
D’Alessandro, A., Keele, G. R., Hay, A., Nemkov, T., Earley, E. J., Stephenson, D., Vincent, M., Deng, X., Stone, M., Dzieciatkowska, M., Hansen, K. C., Kleinman, S., Spitalnik, S. L., Roubinian, N., Norris, P. J., Busch, M. P., Page, G. P., Stockwell, B. R., Churchill, G. A., & Zimring, J. C. (2025). Ferroptosis regulates hemolysis in stored murine and human red blood cells. Blood, 145(7), 765–783. https://doi.org/10.1182/blood.2024026109
Publication Date
Yang, X., Liu, Y., Wang, Z., Jin, Y., & Gu, W. (2024). Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-07180-8
Publication Date
Nam, J. S., Dixon, M. S., & Chio, I. I. C. (2024). Hydrogen sulfide: A whiff of trouble for cancer cell survival. Molecular Cell, 84(20), 3865–3867. https://doi.org/10.1016/j.molcel.2024.09.027
Publication Date
Tschuck, J., Padmanabhan Nair, V., Galhoz, A., Zaratiegui, C., Tai, H.-M., Ciceri, G., Rothenaigner, I., Tchieu, J., Stockwell, B. R., Studer, L., Cabianca, D. S., Menden, M. P., Vincendeau, M., & Hadian, K. (2024). Suppression of ferroptosis by vitamin A or radical-trapping antioxidants is essential for neuronal development. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-51996-1
Publication Date
Hassan, N., Yi, H., Malik, B., Gaspard-Boulinc, L., Samaraweera, S. E., Casolari, D. A., Seneviratne, J., Balachandran, A., Chew, T., Duly, A., Carter, D. R., Cheung, B. B., Norris, M., Haber, M., Kavallaris, M., Marshall, G. M., Zhang, X. D., Liu, T., Wang, J., … Wang, J. Y. (2024). Loss of the stress sensor GADD45A promotes stem cell activity and ferroptosis resistance in LGR4/HOXA9-dependent AML. Blood, 144(1), 84–98. https://doi.org/10.1182/blood.2024024072
Publication Date
Qiu, B., Zandkarimi, F., Saqi, A., Castagna, C., Tan, H., Sekulic, M., Miorin, L., Hibshoosh, H., Toyokuni, S., Uchida, K., & Stockwell, B. R. (2024). Fatal COVID-19 pulmonary disease involves ferroptosis. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-48055-0
Publication Date
Chen, X., Tsvetkov, A. S., Shen, H.-M., Isidoro, C., Ktistakis, N. T., Linkermann, A., Koopman, W. J. H., Simon, H.-U., Galluzzi, L., Luo, S., Xu, D., Gu, W., Peulen, O., Cai, Q., Rubinsztein, D. C., Chi, J.-T., Zhang, D. D., Li, C., Toyokuni, S., … Tang, D. (2024). International consensus guidelines for the definition, detection, and interpretation of autophagy-dependent ferroptosis. Autophagy, 20(6), 1213–1246. https://doi.org/10.1080/15548627.2024.2319901
Publication Date
Qiu, B., Zandkarimi, F., Bezjian, C. T., Reznik, E., Soni, R. K., Gu, W., Jiang, X., & Stockwell, B. R. (2024). Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell, 187(5), 1177-1190.e18. https://doi.org/10.1016/j.cell.2024.01.030
Publication Date
Cui, W., Guo, M., Liu, D., Xiao, P., Yang, C., Huang, H., Liang, C., Yang, Y., Fu, X., Zhang, Y., Liu, J., Shi, S., Cong, J., Han, Z., Xu, Y., Du, L., Yin, C., Zhang, Y., Sun, J., … Chu, B. (2024). Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nature Cell Biology, 26(1), 124–137. https://doi.org/10.1038/s41556-023-01314-6
Publication Date
Upadhyayula, P. S., Higgins, D. M., Mela, A., Banu, M., Dovas, A., Zandkarimi, F., Patel, P., Mahajan, A., Humala, N., Nguyen, T. T. T., Chaudhary, K. R., Liao, L., Argenziano, M., Sudhakar, T., Sperring, C. P., Shapiro, B. L., Ahmed, E. R., Kinslow, C., Ye, L. F., … Canoll, P. (2023). Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-36630-w
Publication Date
Mann, J., Reznik, E., Santer, M., Fongheiser, M. A., Smith, N., Hirschhorn, T., Zandkarimi, F., Soni, R. K., Dafré, A. L., Miranda-Vizuete, A., Farina, M., & Stockwell, B. R. (2024). Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chemical Biology, 31(2), 249-264.e7. https://doi.org/10.1016/j.chembiol.2023.10.012
Publication Date
Manivarma, T., Kapralov, A. A., Samovich, S. N., Tyurina, Y. Y., Tyurin, V. A., VanDemark, A. P., Nowak, W., Bayır, H., Bahar, I., Kagan, V. E., & Mikulska-Ruminska, K. (2023). Membrane regulation of 15LOX-1/PEBP1 complex prompts the generation of ferroptotic signals, oxygenated PEs. Free Radical Biology and Medicine, 208, 458–467. https://doi.org/10.1016/j.freeradbiomed.2023.09.001
Publication Date
Dar, H. H., Mikulska-Ruminska, K., Tyurina, Y. Y., Luci, D. K., Yasgar, A., Samovich, S. N., Kapralov, A. A., Souryavong, A. B., Tyurin, V. A., Amoscato, A. A., Epperly, M. W., Shurin, G. V., Standley, M., Holman, T. R., St. Croix, C. M., Watkins, S. C., VanDemark, A. P., Rana, S., Zakharov, A. V., … Kagan, V. E. (2023). Discovering selective antiferroptotic inhibitors of the 15LOX/PEBP1 complex noninterfering with biosynthesis of lipid mediators. Proceedings of the National Academy of Sciences, 120(25). https://doi.org/10.1073/pnas.2218896120
Publication Date
Bayır, H., Dixon, S. J., Tyurina, Y. Y., Kellum, J. A., & Kagan, V. E. (2023). Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nature Reviews Nephrology, 19(5), 315–336. https://doi.org/10.1038/s41581-023-00689-x
Publication Date
Song, S., Su, Z., Kon, N., Chu, B., Li, H., Jiang, X., Luo, J., Stockwell, B. R., & Gu, W. (2023). ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington’s disease. Genes & Development, 37(5–6), 204–217. https://doi.org/10.1101/gad.350211.122
Publication Date
Minikes, A. M., Song, Y., Feng, Y., Yoon, C., Yoon, S. S., & Jiang, X. (2023). E-cadherin is a biomarker for ferroptosis sensitivity in diffuse gastric cancer. Oncogene, 42(11), 848–857. https://doi.org/10.1038/s41388-023-02599-5
Publication Date
Liu, W., Östberg, N., Yalcinkaya, M., Dou, H., Endo-Umeda, K., Tang, Y., Hou, X., Xiao, T., Fidler, T. P., Abramowicz, S., Yang, Y.-G., Soehnlein, O., Tall, A. R., & Wang, N. (2022). Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. Journal of Clinical Investigation, 132(13). https://doi.org/10.1172/jci155724
Publication Date
Han, Y., Zhu, J., Yang, L., Nilsson-Payant, B. E., Hurtado, R., Lacko, L. A., Sun, X., Gade, A. R., Higgins, C. A., Sisso, W. J., Dong, X., Wang, M., Chen, Z., Ho, D. D., Pitt, G. S., Schwartz, R. E., tenOever, B. R., Evans, T., & Chen, S. (2022). SARS-CoV-2 Infection Induces Ferroptosis of Sinoatrial Node Pacemaker Cells. Circulation Research, 130(7), 963–977. https://doi.org/10.1161/circresaha.121.320518
Publication Date
Zhang, P., Gao, K., Zhang, L., Sun, H., Zhao, X., Liu, Y., Lv, Z., Shi, Q., Chen, Y., Jiao, D., Li, Y., Gu, W., & Wang, C. (2021). CRL2-KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14ARF degradation. Cell Death & Differentiation, 29(4), 758–771. https://doi.org/10.1038/s41418-021-00890-0
Publication Date
Jin, J., Schorpp, K., Samaga, D., Unger, K., Hadian, K., & Stockwell, B. R. (2022). Machine Learning Classifies Ferroptosis and Apoptosis Cell Death Modalities with TfR1 Immunostaining. ACS Chemical Biology, 17(3), 654–660. https://doi.org/10.1021/acschembio.1c00953
Publication Date
Liu, Y., & Gu, W. (2022). p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death & Differentiation, 29(5), 895–910. https://doi.org/10.1038/s41418-022-00943-y
Publication Date
Kremer, D. M., Nelson, B. S., Lin, L., Yarosz, E. L., Halbrook, C. J., Kerk, S. A., Sajjakulnukit, P., Myers, A., Thurston, G., Hou, S. W., Carpenter, E. S., Andren, A. C., Nwosu, Z. C., Cusmano, N., Wisner, S., Mbah, N. E., Shan, M., Das, N. K., Magnuson, B., … Lyssiotis, C. A. (2021). GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24859-2
Publication Date