CRISPR-Cas Systems

Displaying 1 - 17 of 17CSV
da Costa, B. L., Knudsen, A. S., Alves, C. H., Tsang, S. H., & Quinn, P. M. J. (2025). Megabase Deletion of the Human EYS Locus Using CRISPR/Cas9. Retinal Degenerative Diseases XX, 107–111. https://doi.org/10.1007/978-3-031-76550-6_18
Publication Date
Sheikh, M. A., Afandi, F. H., Iannello, G., Corneo, B., Emerald, B. S., & Ansari, S. A. (2024). CRISPR-Cas9 Mediated Gene Deletion in Human Pluripotent Stem Cells Cultured Under Feeder-Free Conditions. Journal of Visualized Experiments, 213. https://doi.org/10.3791/67296
Publication Date
Recinos, Y., Ustianenko, D., Yeh, Y.-T., Wang, X., Jacko, M., Yesantharao, L. V., Wu, Q., & Zhang, C. (2024). CRISPR-dCas13d-based deep screening of proximal and distal splicing-regulatory elements. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-47140-8
Publication Date
Szekely, O., Rangadurai, A. K., Gu, S., Manghrani, A., Guseva, S., & Al-Hashimi, H. M. (2024). NMR measurements of transient low-populated tautomeric and anionic Watson–Crick-like G·T/U in RNA:DNA hybrids: implications for the fidelity of transcription and CRISPR/Cas9 gene editing. Nucleic Acids Research, 52(5), 2672–2685. https://doi.org/10.1093/nar/gkae027
Publication Date
Papaioannou, V. E., & Behringer, R. R. (2023). Recovering a Targeted Mutation in Mice from Embryonic Stem Cell Chimeras or CRISPR–Cas Founders. Cold Spring Harbor Protocols, 2024(1), pdb.over107959. https://doi.org/10.1101/pdb.over107959
Publication Date
Dubey, S., Chen, Z., Jiang, Y. J., Talis, A., Molotkov, A., Ali, A., Mintz, A., & Momen-Heravi, F. (2024). Small extracellular vesicles (sEVs)-based gene delivery platform for cell-specific CRISPR/Cas9 genome editing. Theranostics, 14(7), 2777–2793. https://doi.org/10.7150/thno.92133
Publication Date
Lampe, G. D., King, R. T., Halpin-Healy, T. S., Klompe, S. E., Hogan, M. I., Vo, P. L. H., Tang, S., Chavez, A., & Sternberg, S. H. (2023). Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 42(1), 87–98. https://doi.org/10.1038/s41587-023-01748-1
Publication Date
Shi, P., Murphy, M. R., Aparicio, A. O., Kesner, J. S., Fang, Z., Chen, Z., Trehan, A., Guo, Y., & Wu, X. (2023). Collateral activity of the CRISPR/RfxCas13d system in human cells. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04708-2
Publication Date
George, J. T., Acree, C., Park, J.-U., Kong, M., Wiegand, T., Pignot, Y. L., Kellogg, E. H., Greene, E. C., & Sternberg, S. H. (2023). Mechanism of target site selection by type V-K CRISPR-associated transposases. Science, 382(6672). https://doi.org/10.1126/science.adj8543
Publication Date
Vaitsiankova, A., Thakar, T., & Ciccia, A. (2023). Base-editing screens illuminate variant effects in human hematopoiesis. Cell Reports Methods, 3(7), 100541. https://doi.org/10.1016/j.crmeth.2023.100541
Publication Date
Sufyan, M., Daraz, U., Hyder, S., Zulfiqar, U., Iqbal, R., Eldin, S. M., Rafiq, F., Mahmood, N., Shahzad, K., Uzair, M., Fiaz, S., & Ali, I. (2023). An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional & Integrative Genomics, 23(2). https://doi.org/10.1007/s10142-023-01036-w
Publication Date
Schimmel, J., Muñoz-Subirana, N., Kool, H., van Schendel, R., van der Vlies, S., Kamp, J. A., de Vrij, F. M. S., Kushner, S. A., Smith, G. C. M., Boulton, S. J., & Tijsterman, M. (2023). Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Reports, 42(2), 112019. https://doi.org/10.1016/j.celrep.2023.112019
Publication Date