Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions

Fan, R., Alipour, K., Bowd, C., Christopher, M., Brye, N., Proudfoot, J. A., Goldbaum, M. H., Belghith, A., Girkin, C. A., Fazio, M. A., Liebmann, J. M., Weinreb, R. N., Pazzani, M., Kriegman, D., & Zangwill, L. M. (2023). Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions. Ophthalmology Science, 3(1), 100233. https://doi.org/10.1016/j.xops.2022.100233
Authors:
Rui Fan
Kamran Alipour
Christopher Bowd
Mark Christopher
Nicole Brye
James A. Proudfoot
Michael H. Goldbaum
Akram Belghith
Christopher A. Girkin
Massimo A. Fazio
Jeffrey M. Liebmann
Robert N. Weinreb
Michael J. Pazzani
David Kriegman
Linda M. Zangwill
Affiliated Authors:
Jeffrey M. Liebmann
Author Keywords:
deep learning
fundus photographs
glaucoma detection
vision
vision transformers
ai, artificial intelligence
auroc, areas under the receiver operating characteristic curve
ci, confidence interval
cnn, convolutional neural network
dl, deep learning
deit, data-efficient image transformer
lag, large-scale attention-based glaucoma
ohts, ocular hypertension treatment study
poag, primary open-angle glaucoma
sota, state-of-the-art
vf, visual field
vit, vision transformer
Publication Type:
Article
Unique ID:
10.1016/j.xops.2022.100233
PMID:
Publication Date:
Data Source:
OpenAlex

Record Created: