Calcium Channels

Displaying 1 - 6 of 6CSV
Gavin, A. C., & Colecraft, H. M. (2023). Design and Applications of Genetically-Encoded Voltage-Dependent Calcium Channel Inhibitors. Voltage-Gated Ca2+ Channels: Pharmacology, Modulation and Their Role in Human Disease, 139–155. https://doi.org/10.1007/164_2023_656
Publication Date
del Rivero Morfin, P. J., Marx, S. O., & Ben-Johny, M. (2023). Sympathetic Nervous System Regulation of Cardiac Calcium Channels. Voltage-Gated Ca2+ Channels: Pharmacology, Modulation and Their Role in Human Disease, 59–82. https://doi.org/10.1007/164_2022_632
Publication Date
Morgenstern, T. J., Nirwan, N., Hernández-Ochoa, E. O., Bibollet, H., Choudhury, P., Laloudakis, Y. D., Ben Johny, M., Bannister, R. A., Schneider, M. F., Minor, D. L., & Colecraft, H. M. (2022). Selective posttranslational inhibition of CaVβ1-associated voltage-dependent calcium channels with a functionalized nanobody. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-35025-7
Publication Date
Lipman, A. R., Fan, X., Shen, Y., & Chung, W. K. (2022). Clinical and genetic characterization of CACNA1A‐related disease. Clinical Genetics, 102(4), 288–295. Portico. https://doi.org/10.1111/cge.14180
Publication Date
Sun, L., Tong, C.-K., Morgenstern, T. J., Zhou, H., Yang, G., & Colecraft, H. M. (2022). Targeted ubiquitination of sensory neuron calcium channels reduces the development of neuropathic pain. Proceedings of the National Academy of Sciences, 119(20). https://doi.org/10.1073/pnas.2118129119
Publication Date