Phagocytosis

Displaying 1 - 9 of 9CSV
Andrade-Feraud, C. M., Acanda de la Rocha, A. M., Berlow, N. E., Duque, S., Velazco, A., Castillo, D., Holcomb, B., Coats, E. R., Ghurani, Y. R., Lucey, C. M., Pearson, B., Guilarte, T. R., & Azzam, D. J. (2025). Chronic arsenic exposure of ovarian surface and fallopian tube cultures induces giant and/or multinucleated cells with phagocytosis-like properties and an inflammatory phenotype. Toxicology and Applied Pharmacology, 500, 117394. https://doi.org/10.1016/j.taap.2025.117394
Publication Date
Ma, B., Kamle, S., Sadanaga, T., Lee, C.-M., Lee, J. H., Yee, D. C., Zhu, Z., Silverman, E. K., DeMeo, D. L., Choi, A. M. K., Lee, C. G., & Elias, J. A. (2024). Chitinase 3–like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα– and CD24-Siglec10–Mediated Phagocytosis. The Journal of Immunology, 213(9), 1279–1291. https://doi.org/10.4049/jimmunol.2400035
Publication Date
Sukka, S. R., Ampomah, P. B., Darville, L. N. F., Ngai, D., Wang, X., Kuriakose, G., Xiao, Y., Shi, J., Koomen, J. M., McCusker, R. H., & Tabas, I. (2024). Efferocytosis drives a tryptophan metabolism pathway in macrophages to promote tissue resolution. Nature Metabolism, 6(9), 1736–1755. https://doi.org/10.1038/s42255-024-01115-7
Publication Date
Su, P., Yan, S., Chen, K., Huang, L., Wang, L., Lee, F. H. F., Zhou, H., Lai, T. K. Y., Jiang, A., Samsom, J., Wong, A. H. C., Yang, G., & Liu, F. (2024). EF1α-associated protein complexes affect dendritic spine plasticity by regulating microglial phagocytosis in Fmr1 knock-out mice. Molecular Psychiatry, 29(4), 1099–1113. https://doi.org/10.1038/s41380-023-02396-2
Publication Date
Ngai, D., Schilperoort, M., & Tabas, I. (2023). Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to mediate tissue repair. Nature Metabolism, 5(12), 2206–2219. https://doi.org/10.1038/s42255-023-00921-9
Publication Date
Schilperoort, M., Ngai, D., Sukka, S. R., Avrampou, K., Shi, H., & Tabas, I. (2023). The role of efferocytosis‐fueled macrophage metabolism in the resolution of inflammation. Immunological Reviews, 319(1), 65–80. Portico. https://doi.org/10.1111/imr.13214
Publication Date
Schilperoort, M., Ngai, D., Katerelos, M., Power, D. A., & Tabas, I. (2023). PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nature Metabolism, 5(3), 431–444. https://doi.org/10.1038/s42255-023-00736-8
Publication Date
Shi, J., Wu, X., Wang, Z., Li, F., Meng, Y., Moore, R. M., Cui, J., Xue, C., Croce, K. R., Yurdagul, A., Doench, J. G., Li, W., Zarbalis, K. S., Tabas, I., Yamamoto, A., & Zhang, H. (2022). A genome-wide CRISPR screen identifies WDFY3 as a regulator of macrophage efferocytosis. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-35604-8
Publication Date
Gerlach, B. D., Ampomah, P. B., Yurdagul, A., Liu, C., Lauring, M. C., Wang, X., Kasikara, C., Kong, N., Shi, J., Tao, W., & Tabas, I. (2021). Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 33(12), 2445-2463.e8. https://doi.org/10.1016/j.cmet.2021.10.015
Publication Date