Regularization and Variable Selection Methods

Displaying 1 - 3 of 3CSV
Zhu, T., Xue, L., Tekwe, C., Diaz, K., Benden, M., & Zoh, R. (2024). Clustering Functional Data With Measurement Errors: A Simulation‐Based Approach. Statistics in Medicine, 43(28), 5344–5352. Portico. https://doi.org/10.1002/sim.10238
Publication Date
Wang, G., Li, Y., Xiong, C., Benzinger, T. L. S., Gordon, B. A., Hassenstab, J., Aschenbrenner, A. J., McDade, E., Clifford, D. B., Libre‐Guerra, J. J., Shi, X., Mummery, C. J., van Dyck, C. H., Lah, J. J., Honig, L. S., Day, G., Ringman, J. M., Brooks, W. S., … Fox, N. C. (2024). Examining amyloid reduction as a surrogate endpoint through latent class analysis using clinical trial data for dominantly inherited Alzheimer’s disease. Alzheimer’s & Dementia, 20(4), 2698–2706. Portico. https://doi.org/10.1002/alz.13735
Publication Date
Zhang, L., Wang, Y., Schuemie, M. J., Blei, D. M., & Hripcsak, G. (2022). Adjusting for indirectly measured confounding using large-scale propensity score. Journal of Biomedical Informatics, 134, 104204. https://doi.org/10.1016/j.jbi.2022.104204
Publication Date