Transposases

Displaying 1 - 8 of 8CSV
Witte, I. P., Lampe, G. D., Eitzinger, S., Miller, S. M., Berríos, K. N., McElroy, A. N., King, R. T., Stringham, O. G., Gelsinger, D. R., Vo, P. L. H., Chen, A. T., Tolar, J., Osborn, M. J., Sternberg, S. H., & Liu, D. R. (2025). Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase. Science, 388(6748). https://doi.org/10.1126/science.adt5199
Publication Date
Vaysset, H., Meers, C., Cury, J., Bernheim, A., & Sternberg, S. H. (2025). Evolutionary origins of archaeal and eukaryotic RNA-guided RNA modification in bacterial IS110 transposons. Nature Microbiology, 10(1), 20–27. https://doi.org/10.1038/s41564-024-01889-2
Publication Date
Wiegand, T., Hoffmann, F. T., Walker, M. W. G., Tang, S., Richard, E., Le, H. C., Meers, C., & Sternberg, S. H. (2024). TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature, 631(8020), 439–448. https://doi.org/10.1038/s41586-024-07598-4
Publication Date
Gelsinger, D. R., Vo, P. L. H., Klompe, S. E., Ronda, C., Wang, H. H., & Sternberg, S. H. (2024). Bacterial genome engineering using CRISPR-associated transposases. Nature Protocols, 19(3), 752–790. https://doi.org/10.1038/s41596-023-00927-3
Publication Date
Lampe, G. D., King, R. T., Halpin-Healy, T. S., Klompe, S. E., Hogan, M. I., Vo, P. L. H., Tang, S., Chavez, A., & Sternberg, S. H. (2023). Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 42(1), 87–98. https://doi.org/10.1038/s41587-023-01748-1
Publication Date
George, J. T., Acree, C., Park, J.-U., Kong, M., Wiegand, T., Pignot, Y. L., Kellogg, E. H., Greene, E. C., & Sternberg, S. H. (2023). Mechanism of target site selection by type V-K CRISPR-associated transposases. Science, 382(6672). https://doi.org/10.1126/science.adj8543
Publication Date
Meers, C., Le, H. C., Pesari, S. R., Hoffmann, F. T., Walker, M. W. G., Gezelle, J., Tang, S., & Sternberg, S. H. (2023). Transposon-encoded nucleases use guide RNAs to promote their selfish spread. Nature, 622(7984), 863–871. https://doi.org/10.1038/s41586-023-06597-1
Publication Date
Nagy, D., Verheyen, S., Wigby, K. M., Borovikov, A., Sharkov, A., Slegesky, V., Larson, A., Fagerberg, C., Brasch-Andersen, C., Kibæk, M., Bader, I., Hernan, R., High, F. A., Chung, W. K., Schieving, J. H., Behunova, J., Smogavec, M., Laccone, F., Witsch-Baumgartner, M., … Weis, D. (2022). Genotype-Phenotype Comparison in POGZ-Related Neurodevelopmental Disorders by Using Clinical Scoring. Genes, 13(1), 154. https://doi.org/10.3390/genes13010154
Publication Date