Annals of Applied Statistics
Displaying 1 - 14 of 14
Wang, T., Li, B., Xu, H., Miao, Y., Qian, M., & Wang, S. (2025). A reweighted random forest to predict health outcomes using human microbiome data. The Annals of Applied Statistics, 19(2). https://doi.org/10.1214/24-aoas1973
Publication Date
Columbia Affiliation
View
Wang, F., Zhang, W., & Yao, F. (2025). Computationally efficient whole-genome signal region detection for quantitative and binary traits. The Annals of Applied Statistics, 19(2). https://doi.org/10.1214/25-aoas2029
Publication Date
Columbia Affiliation
View
Wrobel, J., Sauerbrei, B., Kirk, E. A., Guo, J.-Z., Hantman, A., & Goldsmith, J. (2024). Modeling trajectories using functional linear differential equations. The Annals of Applied Statistics, 18(4). https://doi.org/10.1214/24-aoas1943
Publication Date
Columbia Affiliation
Xie, W., Zeng, D., & Wang, Y. (2024). Support vector machine for dynamic survival prediction with time-dependent covariates. The Annals of Applied Statistics, 18(3). https://doi.org/10.1214/24-aoas1875
Publication Date
Columbia Affiliation
Mi, X., Bekerman, W., Rustgi, A. K., Sims, P. A., Canoll, P. D., & Hu, J. (2024). RZiMM-scRNA: A regularized zero-inflated mixture model framework for single-cell RNA-seq data. The Annals of Applied Statistics, 18(1). https://doi.org/10.1214/23-aoas1761
Publication Date
Columbia Affiliation
Shen, J., Schwartz, J., Baccarelli, A. A., & Lin, X. (2024). Testing for the causal mediation effects of multiple mediators using the kernel machine difference method in genome-wide epigenetic studies. The Annals of Applied Statistics, 18(1). https://doi.org/10.1214/23-aoas1814
Publication Date
Columbia Affiliation
Anthopolos, R., Chen, Q., Sedransk, J., Thompson, M., Meng, G., & Galea, S. (2023). A Bayesian growth mixture model for complex survey data: Clustering postdisaster PTSD trajectories. The Annals of Applied Statistics, 17(3). https://doi.org/10.1214/23-aoas1729
Publication Date
Columbia Affiliation
View
Yao, Y., Ogden, R. T., Zeng, C., & Chen, Q. (2023). Bivariate hierarchical Bayesian model for combining summary measures and their uncertainties from multiple sources. The Annals of Applied Statistics, 17(2). https://doi.org/10.1214/22-aoas1699
Publication Date
Columbia Affiliation
View
Sun, Y., He, X., & Hu, J. (2022). An omnibus test for detection of subgroup treatment effects via data partitioning. The Annals of Applied Statistics, 16(4). https://doi.org/10.1214/21-aoas1589
Publication Date
Columbia Affiliation
Cheung, Y. K., Chandereng, T., & Diaz, K. M. (2022). A novel framework to estimate multidimensional minimum effective doses using asymmetric posterior gain and ϵ-tapering. The Annals of Applied Statistics, 16(3). https://doi.org/10.1214/21-aoas1549
Publication Date
Columbia Affiliation
Wang, T., Ionita-Laza, I., & Wei, Y. (2022). Integrated Quantile RAnk Test (iQRAT) for gene-level associations. The Annals of Applied Statistics, 16(3). https://doi.org/10.1214/21-aoas1548
Publication Date
Columbia Affiliation
Hu, L., Zou, J., Gu, C., Ji, J., Lopez, M., & Kale, M. (2022). A flexible sensitivity analysis approach for unmeasured confounding with multiple treatments and a binary outcome with application to SEER-Medicare lung cancer data. The Annals of Applied Statistics, 16(2). https://doi.org/10.1214/21-aoas1530
Publication Date
Columbia Affiliation
Ling, W., Zhang, W., Cheng, B., & Wei, Y. (2021). Zero-inflated quantile rank-score based test (ZIQRank) with application to scRNA-seq differential gene expression analysis. The Annals of Applied Statistics, 15(4). https://doi.org/10.1214/21-aoas1442
Publication Date
Columbia Affiliation
Xie, S., Zeng, D., & Wang, Y. (2021). Integrative network learning for multimodality biomarker data. The Annals of Applied Statistics, 15(1). https://doi.org/10.1214/20-aoas1382
Publication Date
Columbia Affiliation
View