Patterns
Displaying 1 - 5 of 5
Kefeli, J., & Tatonetti, N. (2024). TCGA-Reports: A machine-readable pathology report resource for benchmarking text-based AI models. Patterns, 5(3), 100933. https://doi.org/10.1016/j.patter.2024.100933
Publication Date
Columbia Affiliation
Ramlall, V., Gisladottir, U., Kefeli, J., Tanaka, Y., May, B., & Tatonetti, N. (2023). Using machine learning probabilities to identify effects of COVID-19. Patterns, 4(12), 100889. https://doi.org/10.1016/j.patter.2023.100889
Publication Date
Columbia Affiliation
Park, J., Artin, M. G., Lee, K. E., May, B. L., Park, M., Hur, C., & Tatonetti, N. P. (2023). Structured deep embedding model to generate composite clinical indices from electronic health records for early detection of pancreatic cancer. Patterns, 4(1), 100636. https://doi.org/10.1016/j.patter.2022.100636
Publication Date
Columbia Affiliation
Ramirez, A. H., Sulieman, L., Schlueter, D. J., Halvorson, A., Qian, J., Ratsimbazafy, F., Loperena, R., Mayo, K., Basford, M., Deflaux, N., Muthuraman, K. N., Natarajan, K., Kho, A., Xu, H., Wilkins, C., Anton-Culver, H., Boerwinkle, E., Cicek, M., Clark, C. R., … Zwick, M. E. (2022). The All of Us Research Program: Data quality, utility, and diversity. Patterns, 3(8), 100570. https://doi.org/10.1016/j.patter.2022.100570
Publication Date
Columbia Affiliation
Rogozhnikov, A., Ramkumar, P., Bedi, R., Kato, S., & Escola, G. S. (2022). Hierarchical confounder discovery in the experiment-machine learning cycle. Patterns, 3(4), 100451. https://doi.org/10.1016/j.patter.2022.100451
Publication Date
Columbia Affiliation